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Abstract

Scope—Rotenone is a toxicant believed to contribute to the development of Parkinson's disease.

Methods and results—Using human peripheral blood lymphocytes we demonstrated that 

exposure to rotenone resulted in disruption of electron transport accompanied by the production of 

reactive oxygen species, development of apoptosis and elevation of peroxidase activity of 

mitochondria. Employing LC/MS based lipidomics/oxidative lipidomics we characterized 

molecular species of cardiolipin (CL) and its oxidation/hydrolysis products formed early in 

apoptosis and associated with the rotenone-induced mitochondrial dysfunction.

Conclusions—The major oxidized CL species - tetra-linoleoyl-CL – underwent oxidation to 

yield epoxy-C18:2 and dihydroxy-C18:2 derivatives predominantly localized in sn-1 and sn-2 

positions, respectively. In addition, accumulation of mono-lyso-CL species and oxygenated free 

C18:2 were detected in rotenone-treated lymphocytes. These oxidation/hydrolysis products may be 

useful for the development of new biomarkers of mitochondrial dysfunction.

Keywords

Cardiolipin peroxidation; lymphocytes; apoptosis; mitochondrial dysfunction; Parkinson's disease 
biomarkers

Introduction

Parkinson's disease (PD) is a neurodegenerative disorder in the elderly resulting in the 

damage and death of dopaminergic neurons in the brain [1]. Oxidative stress and 

mitochondrial dysfunction have been implicated as important contributors to neuronal death 

induced in substantia nigra of patients with PD [2–4]. In particular, increased lipid 

peroxidation products have been found in PD brains [5]. During the last three decades, 
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epidemiological and toxicological studies provided data that pesticides are potential 

toxicants for dopamine-producing neurons and contribute to the development of PD [6]. 

Accordingly, exposure to pesticides has been associated with increased incidence of PD [7, 

8]. Mitochondria are targets for a number of environmental compounds including pesticides 

[6, 7] such as rotenone [9, 10]. Rotenone is highly lipophillic, easily crosses the blood-brain 

barrier and accumulates in mitochondria where it binds to complex I, inhibits the flow of 

electrons and results in generation of superoxide [11]. However, the mechanistic links 

between the oxidative stress, lipid peroxidation, neuronal death, mitochondrial impairments 

induced by pesticides have not been identified.

Blood cells and circulating lymphocytes have been often used to study the pathogenic 

mechanisms of neurodegenerative diseases, including PD. Mitochondrial complex deficit 

[12, 13] and up-regulation of the α-synuclein gene [14] that render these cells susceptible to 

apoptosis were detected in lymphocytes from PD patients [15, 16]. Recently, we 

demonstrated that oxidation of a mitochondria-specific phospholipid, cardiolipin (CL), is 

essential for the execution of apoptosis (release of proapoptotic factors from mitochondria 

into the cytosol) in primary rat cortical neurons in vitro [17, 18] and in rat brain in vivo [19, 

20]. Intermembrane space hemoprotein, cytochrome c (cyt c) has been identified as a 

catalyst of CL peroxidation [21]. CL is a negatively charged phospholipid with four fatty 

acid residues [21]. It is found exclusively in the inner-mitochondrial membrane where it 

accounts for 25% of all phospholipids [22] and plays a significant role in mitochondria 

bioenergetics [23–26]. Taking into account that lymphocytes express the catecholaminergic 

system and, similar to neuronal cells, molecular death machinery, including the release of 

mitochondrial pro-apoptotic factors into the cytosol, leading to the typical morphological 

and biochemical characteristics of apoptosis [27–29], we suggested that cyt c can be 

involved in the generation of specifically oxygenated molecular species of CL in circulating 

lymphocytes exposed to rotenone.

In this paper, by using lipidomics/oxidative lipidomics approaches we identified and 

characterized molecular species of CL in human peripheral blood lymphocytes, evaluated 

specific profiles of rotenone-induced CL oxidation products and established their association 

with the production of H2O2, impairments of mitochondrial dysfunction and apoptosis in 

human lymphocytes exposed to rotenone.

Material and Methods

Reagents

Tetra-linoleyl-cardiolipin (TLCL) and tetra-myristoyl-cardiolipin (TMCL) were purchased 

from Avanti Polar Lipids Inc (Alabaster, AL). Cytochrome c (cyt c), 

diethylenetriaminepentaacetic acid (DTPA), PLA1 from Thermomyces lanuginosus, PLA2 

from porcine pancreas, H2O2 and all organic solvents (HPLC grade), Hystopaque 1077, PBS 

(Ca2+, Mg2+ free), rotenone, DMSO were purchased from Sigma-Aldrich (St. Louis, MO). 

HPTLC silica G plates were purchased from Whatman (Schleicher & Schuell, England). 

Fetal bovine serum, RPMI 1640 medium Penicillin/Streptomycin were from Life 

Technologies (Grand Island, NY). Heptadecanoic acid (C17:0) was obtained from Matreya 

LLC (Pleasant Gap, PA). 9S-hydroperoxy-10E,12Z-octadecadienoic acid, 9S-hydroxy-10E,

Tyurina et al. Page 2

Mol Nutr Food Res. Author manuscript; available in PMC 2014 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12Z-octadecadienoic acid, 13-oxo-9Z,11E-octadecadienoic acid, 13S-hydroxy-9Z,11E-

octadecadienoic acid, 13S-hydroperoxy-9Z,11E-octadecadienoic acid, 9S-hydroxy-10E,

12Z-octadecadienoic-9,10,12,13-d4 acid, 9(10)epoxy-12Z-octadecenoic acid, 

12(13)epoxy-9Z-octadecenoic acid were purchased from Cayman Chemical Co (Ann Arbor, 

Michigan, USA).

Isolation of human peripheral blood lymphocytes—Lymphocytes were isolated 

from buffy coat obtained from Central Blood Bank by differential centrifugation using 

Hystopaque 1077 as described [30].

Production of reactive oxygen species—Superoxide and hydrogen peroxide were 

detected by using dihydroethidium (DHE) and 2',7'-dichlorfluorescein-diacetate (DCFH-

DA) assays, respectively, as previously described [31]. The data are presented as fold 

change of the mean intensity of either ethidium or DCF fluorescence compared with DHE or 

DCFH-DA loaded controls for superoxide and hydrogen peroxide, respectively.

Detection of apoptosis—Apoptosis was evaluated by phosphatidylserine (PS) 

externalization using Annexin V–FITC apoptosis detection kit (Biovision, Mountain View, 

CA) and caspase 3/7 with a luminescence Caspase–Glo™ 3/7 assay kit (Promega, Madison, 

WI).

Assessments of mitochondrial functional state—Mitochondrial membrane 

potential (MMP) was determined by JC-1 staining. Briefly, lymphocytes were stained with 

10 μg/ml of JC-1 at 37 °C for 15 min and then washed twice with PBS. The samples were 

analyzed immediately by using RF-5301 PC spectrofluorometer (Shimadzu. Japan) 

(excitation 485 nm, slits 5 nm). The ratio of red (aggregates, 590 nm) and green (monomer, 

529 nm) fluorescence was used as a relative measure of MMP. In addition the lymphocytes 

were examined under a Nikon ECLIPSE TE 200 fluorescence microscope (Tokyo, Japan) 

equipped with a digital Hamamatsu CCD camera (C4742-95-12NBR) and analyzed using 

the MetaImaging Series™ software version 4.6 (Universal Imaging Corp., Downingtown, 

PA). Cellular ATP content was measured by using an adenosine 5'-triphosphate 

bioluminescence somatic cell assay kit (Sigma) according to the manufacturer's instructions. 

Complex I activity was measured by consumption of NADH at 340nm as described [32].

Isolation of mitochondria and detection of peroxidase activity—Mitochondria 

were isolated from human peripheral blood lymphocytes as described [33]. Peroxidase 

activity was detected as previously described [34]. Briefly mitochondria (2 mg of 

protein/ml) were incubated with alamethicin (0.1 mg/ml) on ice for 15 min in 150 mM KCl, 

0.5 mM EGTA, 25 mM KH2PO4 (pH 7.0). After that mitochondria were centrifuged 

(15,000g for 15 min) and re-suspended in 25 mM HEPES (pH 7.4) containing 100 μM 

DTPA, Amplex Red (50 μM) and tert-BOOH (2 mM). Fluorescence of resorufin, a product 

of Ample Red oxidation, was measured using Shimadzu RF5301–PC spectrofluorometer 

(λex and λem − 575 and 585 nm, respectively).

Analysis of CL and its oxygenated molecular species—Lipids were extracted 

using Folch procedure [35]. Lipid phosphorus was determined by a micro-method [36]. 
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LC/MS was performed using a Dionex Ultimate™ 3000 HPLC system coupled on-line to a 

linear ion trap mass spectrometer (LXQ Thermo-Fisher) as described [37]. To fully 

characterize oxygenated free fatty acids and diversified CL oxidation products we chose to 

pre-separate them from other phospholipids by 2D-HPTLC as previously described [38]. 

Corresponding spots were scraped-off and lipids extracted [35]. Thus obtained CLs were 

treated either with phospholipase A1 (PLA1) from Thermomyces lanuginosus or PLA2 from 

porcine pancreatic phospholipase A2 (PLA2) to liberate fatty acids from sn-1 and sn-2 

positions and analyzed by LC-MS. Briefly, CLs were treated with PLA1 (10 μl/μmol CL) or 

PLA2 (10U/μmol of CL) in 0.5 M borate buffer, pH 9.0 containing 20 mM cholic acid, 2 

mM CaCl2 and 100 μM DTPA for 30 min. Under these conditions, almost 99% of CLs were 

hydrolyzed. At the end of incubation, lipids were extracted and fatty acids were analyzed by 

LC/MS using reverse phase C18 column. The differentiation between isobaric epoxy-C18:2 

CL species from hydroxy-C18:2-containing species was achieved via i) treatment of CLs by 

exogenous PLA1/PLA2 resulting in the release of LA residues and ii) their subsequent 

separation and analysis by LC-MS using C18 column and two gradient solvent systems 

(system A: tetrahydrofuran/methanol/water/CH3COOH, 25:30:44.9:0.1 (v/v) and System B: 

methanol/water, 90:10 (v/v)) as previously described [39]. Under these conditions, the 

retention times for epoxy-C18:2 (m/z 295) and hydroxy-C18:2 (m/z 295) were 21.16 and 

17.04 min, respectively. This was confirmed by comparison with the standards of epoxy-

C18:2 (m/z 295) and hydroxy-C18:2 (m/z 295) available from Cayman Chemicals. 

Additionally, several major classes of phospholipids, including CLs, were separated and 

analyzed by LC-MS as described [37]. For quantitative assessments TMCL and oxygenated 

fatty acids were used as internal standards. Mono-lyso-CL was prepared from TMCL as 

described [40].

Statistics—The results are presented as mean ± S.D. values from at least three 

experiments, and statistical analyses were performed by either paired/unpaired Student's t-

test or one-way ANOVA. The statistical significance of differences was set at p< 0.05.

Results

Rotenone induces mitochondria dysfunction in human lymphocytes—After 

exposure of human peripheral blood lymphocytes to rotenone (100 and 250 μM, 12 and 18 

hrs at 37°C), the mitochondrial functions were assessed by measurements of MMP, 

determination of complex I activity and ATP levels. Rotenone induced significant inhibition 

of complex I activity in a dose- and time dependent manners (Fig 1A). Significant 

reductions of the MMP and ATP contents were detected in lymphocytes treated with 

rotenone (Fig.1B, C). Thus exposure of human lymphocytes to rotenone resulted in 

disruption of electron transport and mitochondrial dysfunction.

Generation of reactive oxygen species in human lymphocytes exposed to 
rotenone—Interrupted mitochondrial electron transport, particularly at the level of 

complex I, is known to cause a massive production of superoxide (53). To determine 

whether superoxide, indeed, has been generated in rotenone-treated cells we used DHE 

assay. We found that rotenone caused concentration-dependent production of superoxide 
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(Fig. 2A). Given that mitochondrial superoxide is rapidly converted to membrane permeable 

and relatively stable hydrogen peroxide we examined the intracellular concentration of 

hydrogen peroxide using DCFH-DA assay. A significant increase of DCF fluorescence was 

observed in human lymphocytes following rotenone exposure (Fig. 2B). Thus, rotenone-

induced mitochondria dysfunction in lymphocytes was accompanied by the production of 

ROS.

Rotenone induces apoptosis in human lymphocytes—Assuming that generation of 

ROS is one of the pre-requisites for triggering apoptosis, we further determined whether 

rotenone-induced production of superoxide and H2O2 was accompanied by apoptosis. 

Indeed, we found that caspase 3/7 activity was significantly increased in lymphocytes 

exposed to rotenone as compared with control non-exposed lymphocytes (Fig. 3A). A 2.5 

and 2.8-fold increase in caspase 3/7 activity was detected either for 12 or 18 hrs after the 

exposure to 100 and 250 μM of rotenone, respectively. In addition, using Annexin V binding 

assay we were able to detect a significant number of lymphocytes with externalized PS on 

the cell surface after their exposure to 100 and 250 μM of rotenone for 12 and 18 hrs (Fig. 

3B). Thus, treatment of lymphocytes to rotenone resulted in development of apoptotic cell 

death pathway.

Rotenone stimulates peroxidase activity in mitochondria—We suggested that in 

lymphocytes, during rotenone-induced apoptosis, mitochondrial phospholipid CL interacts 

with cyt c to form a complex with peroxidase activity that consequently results in selective 

oxidation of CL polyunsaturated molecular species. To detect peroxidase activity of cyt 

c/CL complexes we isolated mitochondria from lymphocytes exposed to rotenone. To 

remove free cyt c we treated mitochondria with a channel-forming antibiotic, alamethicin 

(9). Notably, mitochondria isolated from lymphocytes exposed to rotenone at concentrations 

of 100 and 250 μM for 18 hrs exhibited significantly elevated levels of peroxidase activity as 

compared to mitochondria from control, non-treated lymphocytes (Fig. 4).

Identification of CL molecular species in human lymphocytes—As CL oxidation 

is required for the execution of apoptotic program, we further employed LC/MS to analyze 

CL molecular species and their oxidation products in lymphocytes. In a typical negative 

mode MS spectrum of CL, two major clusters were detected (Fig. 5A). MS/MS analysis was 

performed (Supporting Information Fig. S1) showed that CLs were represented by seven 

major molecular species predominantly containing readily peroxidizable linoleic acid 

residues (C18:2) (Table 1).

Identification of CL molecular species in human lymphocytes exposed to 
rotenone—Next, we performed detailed structural characterization of oxygenated CL 

molecular species in human peripheral blood lymphocytes. Quantitative assessments of 

rotenone-induced changes in CL revealed a significant reduction of highly unsaturated 

species of CL, particularly TLCL (Fig. 5B). The loss of “oxidizable” TLCL was dependent 

on concentration of rotenone and accompanied by the appearance of its oxygenated species 

with one, two and three oxygen functionalities whereby mono-oxygenated derivatives were 

predominant (Fig. 5C). The structure of oxygenated CLs was confirmed by MS/MS analysis 
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as exemplified by a typical fragmentation pattern of mono-oxygenated TLCL molecular 

(Supporting Information Fig. S2).

Stereo-specificity of TLCL oxygenation in sn-1 and sn-2 positions was examined by LC/

ESI-MS using hydrolysis of CL with PLA1 and/or PLA2, respectively. Quantitative MS 

analysis of fatty acids liberated from sn-1 position revealed a significantly decreased C18:2 

content (Fig. 6Aa) and elevated levels of its oxygenated product with 1–3 oxygens (Fig. 

6Ab) that markedly exceeded oxidative loss of C18:2 from the sn-2 position (Fig. 6Ba). 

Notably, the major oxygenated differences between oxygenated products generated in sn-1 

and sn-2 positions were not only quantitative but also qualitative with epoxy-C18:2 

derivatives (Fig. 6Ab and Supporting Information Fig.S3) and dihydroxy-C18:2 derivatives 

(Fig. 6Bb and Supporting Information Fig. S4) accumulating in sn-1 and sn-2 positions, 

respectively.

To test whether cyt c could be a candidate catalyst involved in rotenone-induced generation 

of oxygenated molecular species of CL, we performed a model oxidation experiment using 

TLCL, the major molecular species of CL present in human peripheral blood lymphocytes 

(Fig. 4A, Table 1). When TLCL was incubated in the presence of cyt c and hydrogen 

peroxide for 30 min at 37°C we found that a decreased content of TLCL was accompanied 

by the accumulation of its oxygenated products with 1–3 oxygens with similar composition 

and stereo-specificity as those detected in rotenone-exposed lymphocytes (Fig. 7A, B). 

These results are compatible with involvement of cyt c in catalysis of TLCL oxidation in 

lymphocytes exposed to rotenone.

Rotenone induced accumulation of mono-lyso-CL in human lymphocytes—It 

is possible that the loss of CL in rotenone-challenged lymphocytes may be associated, at 

least in part, with activation of endogenous PLA2. The presence of Ca2+-independent iPLA2 

in capable of utilizing (oxidatively modified) CL species in mitochondria has been reported 

[41–43]. Indeed, treatment of lymphocytes with rotenone resulted in increased content of 

mono-lyso-CL species (Fig. 8A). In line with this accumulation of oxygenated C18:2 

containing from one to three oxygens in the fraction of free fatty acids was detected (Fig. 

8B). After rotenone exposure, the endogenous contents of mono-lyso-CL and free fatty acids 

– likely released from phospholipids by endogenous PLA2 - are shown in Figs. 8Ab and 

8Bb. We found that the content of free C18:2 with two oxygens (m/z 311) was higher than 

that of mono-oxygenated C18:2. This suggests that endogenous PLA2 – likely mitochondrial 

iPLA2 – hydrolyzed peroxidized TLCLs with two oxygens (m/z 311) more effectively than 

CLs with mono-oxygenated C18:2 (m/z 295). No significant accumulation of other lyso-

phospholipids in lymphocytes in response to rotenone was detected (data not shown). This 

suggests that accumulated mono-lyso-CL molecular species originated from oxygenated 

TLCL formed in lymphocytes upon rotenone exposure.

Discussion

Although oxygenated fatty acids and phospholipids are critical signaling molecules (and/or 

biomarkers) in several neurological disorders [44], essential information on molecular 

targets, particularly specific polyunsaturated molecular species of phospholipids undergoing 
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oxidation and leading to mitochondrial dysfunction and their association with 

neurodegenerative disease such as PD, is lacking. While the general association of oxidative 

stress with PD has been emphasized in numerous studies (reviewed in [45–48], attempts to 

link the products of oxidative modification of different biomolecules to specific 

pathogenetic pathways of PD were not victorious [5, 49]. This may be due, at least in part, to 

insufficient information on the diversity and structure of oxidized biomolecules generated in 

mitochondria – the major metabolic candidate as a source of impaired and oxidatively 

modified PD-associated molecular species. Among those, CLs – unique and functionally 

essential phospholipids of mitochondria – may be of particular importance [50–52]. In this 

paper by using LC/MS-based oxidative lipidomics, we characterized all major molecular 

species of CL and its oxidized molecular species formed in rotenone-associated 

dysfunctional mitochondria in human peripheral blood lymphocytes.

Changes in the CL content as well as its composition have been shown to be responsible for 

mitochondrial dysfunction associated with several pathological conditions [53–56]. CL 

profile in mitochondria can be changed due to: i) loss of CL as a result of alteration in CL 

synthase activity [2, 31, 57], ii) altered fatty acid composition of CL as a result of disruption 

of CL remodeling process [58–60] and, iii) CL oxidation due to ROS generation [55]. 

Generation of ROS [8, 61] and activation of the intrinsic apoptotic cell death pathway [62] 

have been associated with rotenone-induced neuron degeneration in vitro and in vivo [53–

55], dissipation of MMP, release cyt c from mitochondria into the cytosol and apoptosis 

[63]. Chronic and systemic inhibition of complex I leads to selective degeneration of 

dopaminergic neurons and produces neuro-pathological features of PD [4, 64].

Having in mind potential detection of mitochondrial phospholipid biomarkers of PD, we 

examined human peripheral blood lymphocytes that are often used to identify the 

mechanism leading to development of neurodegenerative diseases such as PD and 

Alzheimer disease [8, 65, 66]. In fact, increased apoptosis of lymphocytes in patients with 

PD has been documented [15, 16]. Both extrinsic and intrinsic apoptotic pathways were 

recognized in lymphocytes of PD patients [16, 67, 68]. Notably, rotenone induced apoptosis 

in lymphocytes has been linked to its ability to generate ROS ( ) leading to 

mitochondrial damage [10]. Further rotenone-induced inhibition of complex I activity and 

impairment of electron transport leading to massive production of ROS [69], and possibly 

protein and lipid peroxidation have been documented in dopaminergic cell line using 

BODYPI oxidation assays [70]. However, specific features of CL peroxidation and 

identification of CL oxidation products as essential factors in mitochondrial stages of 

lymphocyte apoptosis, have not been studied so far.

Here, we demonstrated that exposure of human lymphocytes to rotenone is associated with 

mitochondria dysfunction, ROS production, development of apoptotic cell death pathway 

and accumulation of oxygenated species of highly unsaturated CL containing four C18:2 

residues as well as its metabolite mono-lyso-CL. Detailed structural analysis of CL 

oxidation products revealed unusual features of rotenone-triggered peroxidation: i) 

predominant peroxidation of TLCL, CL containing four C18:2 residues ii) preferential 

accumulation of oxygenated C18:2 in sn-1 rather than sn-2 position; iii) quantitative 
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abundance of mono-oxygenated species vs species with two and three oxygen 

functionalities. Further studies will determine whether these specific features are uniquely 

associated with the rotenone-driven inhibition of respiratory complex I or may be common 

to other oxidative routes leading to the execution of apoptotic program in lymphocytes.

Our previous work has identified cyt c, an intermembrane space electron carrier, as a 

catalyst of the reaction during which it binds CL to yield a complex with CL-specific 

peroxidase activity [34]. The complex generates oxygenated CL species at the early stage of 

apoptosis in vitro and in vivo [17, 18, 20, 37, 71, 72]. Moreover, cyt c/CL complexes can 

interact with α-synuclein to form oligomers with high peroxidase activity [52] thus 

contributing to the formation of Lewis bodies – a morphological hallmark of PD. These 

results provided direct evidence for previously suggested conversion of cyt c into peroxidase 

and its possible role in neurodegenerative process [73], including pathogenesis of PD [74, 

75]. Notably, while peroxidase activity cyclooxygenase-2 and peroxidation of non-esterified 

fatty acids have been linked to the pathogenesis of PD [74, 75] the oxidation of esterified 

lipids has not been yet investigated. Our data indicate that in rotenone treated lymphocytes, 

cyt c utilizes ROS, particularly hydrogen peroxide, formed during apoptotic cell death, to 

cause peroxidation of C18:2-containing CL species in mitochondria (Fig. 9). In addition, 

rotenone-induced oxidative stress and ROS production can cause activation of Ca2+-

independent iPLA2 [76] resulting in the accumulation of CL hydrolysis products such as 

mono-lyso-CL and oxygenated fatty acids. iPLA2 has been identified as the major 

endogenous type of PLA2 capable of hydrolyzing peroxidized phospholipids in 

mitochondria [41, 77].

We found that the most predominant molecular species of CL that underwent oxidative 

modification after exposure of human lymphocytes to rotenone was tetralinoleoyl-CL with 

four symmetric C18:2-residues in both sn-1 and sn-2 positions. In addition we were able to 

detect endogenously formed TLCLox, non-ox-mono-lyso-CL and C18:2-ox. To determine 

which of C18:2 residues was a preferred substrate of rotenone-induced peroxidation, we 

treated isolated CL fraction with either PLA1 or PLA2 – to produce lyso-CLs and release 

C18:2 from the respective sn-1 or sn-2 positions. This resulted in liberation of oxygenated 

C18:2 species and di-lyso-CLs whereby higher contents of oxygenated C18:2 was produced 

by PLA1 (as compared to PLA2). Because 99% of total CLs were hydrolyzed and converted 

into di-lyso-CLs and FAs, we further analyzed oxygenated species of C18:2. We found that 

only one out of four C18:2 in TLCL molecule (in either sn-1 or sn-2 positions) underwent 

oxidative modification upon rotenone exposure. Assuming that endogenous iPLA2 cleaves 

predominantly C18:2-ox in sn-2 but not non-ox-C18:2, C18:2-ox plus non-ox-mono-lyso-CL 

should be expected hydrolysis products – in line with our observations. Thus not only CL 

peroxidation products but also mono-lyso-CL in lymphocytes may be used as biomarkers of 

PD-associated metabolic disturbances – similar to recent finding in patients with Barth 

syndrome, a disease associated with mitochondrial dysfunction [78].

While this study has been focused on CLs as well as their oxidized and hydrolyzed 

metabolites, we have also analyzed several other major classes of phospholipids, such as 

phosphatidylcholine, phosphatidylethanolamine, phopshatidylinositol, phosphatidylserine 

and sphingomyelin. We found that exposure of lymphocytes to rotenone resulted in 
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significant accumulation of several oxygenated molecular species of TLCL as well as its 

hydrolysis products – mono-lyso-CL and oxygenated free C18:2. These rotenone-induced 

changes were CL-specific: neither oxygenated products nor hydrolysis products were 

detected in other examined classes of phospholipids. Thus no rotenone-induced remodeling 

of other phospholipids took place under experimental conditions used.

Apoptotic cell death pathway is activated in lymphocytes of PD patients [15, 16]. Therefore, 

peripheral blood lymphocytes are considered as potential candidate-biomarkers of 

mitochondrial dysfunction in PD. Given a recently established role of selective peroxidation 

of a mitochondria-specific phospholipid, CL, in execution of mitochondrial stages of 

apoptosis, one can assume that detailed analysis of CL peroxidation products may lead to the 

development of useful biomarkers. It has been reported that micromolar concentrations of 

rotenone (10–250 μM) induce apoptosis in isolated human lymphocytes [10]. However, 

specific role of CL peroxidation as an essential factor in mitochondrial stages of lymphocyte 

apoptosis, has not been yet studied. In the current work, we found that rotenone (at 

concentrations of 100 and 250 μM) was effective in stimulating selective accumulation of 

CL oxidation products and induction of apoptosis in isolated human lymphocytes. While the 

concentrations of rotenone used may seem to be relatively high, one should consider them in 

the context of its known toxicity and exposure doses. The estimates of rotenone toxicity for 

humans are commonly based on animal studies. In rat rotenone PD model with 

administration of pesticide through I.V. route (3–18 mg/kg/day) [79, 80], its concentration in 

circulation is within micromolar range. Of note, rotenone is usually sold as 1 – 5% 

formulation that corresponds to approximately its 30–150 mM solution. Thus agricultural 

workers can be occupationally exposed to relatively high doses of rotenone.

In conclusion, we demonstrated that exposure of human peripheral blood lymphocytes to a 

pesticide, rotenone, causes time- and dose-dependent selective oxidation of TLCL, 

accumulation of its hydrolysis products - mono-lyso-CLs - as well as generation of TLCL 

oxygenated molecular species associated with mitochondrial dysfunction likely through 

enzymatic cyt c catalyzed reactions triggered early in apoptosis. We believe that 

characterization of oxidatively modified CL molecular species as well as identification its 

hydrolysis products are important for better understanding of PD pathogenesis and may lead 

to the development of new biomarkers of mitochondrial dysfunction associated with PD.
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Abbreviations

CL cardiolipin

cyt c cytochrome c
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DCFH-DA 2',7'-dichlorfluorescein-diacetate

DHE dihydroethidium

DTPA diethylenetriaminepentaacetic acid

MMP mitochondrial membrane potential

PD Parkinson's disease

PS phosphatidylserine

PLA2 phospholipase A2

PLA1 phospholipase A1

ROS reactive oxygen species

TLCL tetra-linoleyl-cardiolipin

TMCL tetra-myristoyl-cardiolipin
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Figure 1. Effects of rotenone on mitochondrial functions in human peripheral blood lymphocytes
Complex I activity (A), MMP (B) and content of ATP (C) in human lymphocytes exposed to 

rotenone (100, 250 μM, 12 and 18 hrs at 37°C). Typical fluorescent images of control and 

rotenone-treated lymphocytes (B,a) and assessment of MMP by using flow cytometry (B,b). 

Data are means ± S.E., n=6, *p<0.05 vs control.
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Figure 2. Rotenone induced generation of reactive oxygen species generated in human 
peropheral blood lymphocytes
Superoxide (A) and hydrogen peroxide (B) formation in lymphocytes exposed to rotenone 

(100 and 250 μM for 12 and 18 hrs at 37°C). Data are means ± S.E., n=6, *p<0.05 vs 

control.
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Figure 3. Apoptosis induced by rotenone in human peripheral blood lymphocytes
Caspase 3/7 activation (A) and PS externalization (B) in lymphocytes exposed to rotenone 

(100 and 250 μM for 12 and 18 hrs, at 37°C). Data are means ± S.E., n=6, *p<0.05 vs 

control.
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Figure 4. Peroxidase activity of mitochondria isolated from human peripheral blood 
lymphocytes
Mitochondria were isolated from lymphocytes exposed to rotenone (100 and 250 μM for 18 

hrs, at 37°C) treated with alamethicin and peroxidase activity was detected. Data are means 

± S.E., n=3, *p<0.05 vs control.
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Figure 5. Rotenone induced oxidation of CL in human peripheral blood lymphocytes
Typical negative mode ESI-MS spectrum of CL obtained from human lymphocytes (A), 

LC/MS quantitative assessment of TLCL (B) and oxidized (C) TLCL molecular species. 

Note: the decrease of TLCL and accumulation of its oxygenated species were dependent on 

rotenone concentration. Oxygenated molecular species of TLCL with m/z 1464 (plus 1 

oxygen), 1480 (plus two oxygens) and 1496 (plus three oxygens) were detected in rotenone 

treated lymphocytes (18 hrs). Data are means ± S.E., n=5, *p<0.03 vs control.
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Figure 6. Identification of esterified oxygenated fatty acids in human peripheral blood 
lymphocytes esposed to rotenone
Quantitative LC/MS assessment of oxygenated C18:2 localized and sn-1 (A) and sn-2 (B) 

positions of CL from rotenone-exposed lymphocytes (100 and 250 μM, for 18 hrs at 37°C. 

(a) Decrease of oxidizable C18:2 and (b) formation of oxygenated C18:2 hydrolyzed from 

sn-1 and sn-2 positions of CL, respectively. Data are means ± S.E., n=5, *p<0.03 vs control.
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Figure 7. Cyt c induced oxidation of TLCL in the presence of H2O2
Quantitative LC/MS assessment of TLCL and its oxygenated species (A) formed in cyt c 

driven reaction. Oxygenated products of C18:2 (B) formed in sn-1 (a) and sn-2 (b) positions 

of CL upon treatment of TLCL with cyt c/H2O2. After incubation with cyt c/H2O2, TLCL 

was treated either with PLA1 or PLA2. Liberated oxygenated and non-oxygenated C18:2 

were analyzed by reverse phase LC/MS. Data are means ± S.E., n=5, *p<0.05 vs control.
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Figure 8. Rotenone induced accumulation of mono-lyso-CL and oxygenated free fatty acids in 
human peripheral blood lymphocytes
(A) LC/MS base profile (a) and quantitative assessment (b) of mono-lyso-CL. (B) Content 

of free C18:2 containing one (a) two (b) and three (c) oxygens in lymphocytes treated with 

rotenone (100 and 250 μM for 18 hrs at 37°C. Note: the increase of mono-lyso-CL was 

accompanied by accumulation of oxygenated free C18:2. Data are means ± S.E., n=5, 

*p<0.05 vs control.
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Figure 9. Proposed mechanism of rotenone-induced CL oxidation and its hydrolysis in human 
lymphocytes mitochondria
IMM-inner mitochondrial membrane; cyt c, cytochrome c; iPLA2- Ca2+-independent 

phospholipase A2; CL, cardiolipin; CLox, oxygenated cardiolipin; mCL, monolyso-

cardiolipin; FAox, oxygenated C18:2.
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Table 1

Identification and quantitative assessment of major CL molecular species in human peripheral blood 

lymphocytes by LC/MS

m/z Molecular species pmol/nmol CL

1421.9 C18:2/C18:2/C18:2/C16:1 30.5 ± 7.4

1447.9 C18:2/C18:2/C18:2/C18:2 632.0 ± 24.0

1449.9 C18:2/C18:2/C18:2/C18:1 147.1 ± 6.8

1469.9 C18:2/C18:2/C18:2/C20:5 46.8 ± 3.9

1471.9 C18:2/C18:2/C18:2/C20:4 49.0 ± 7.6

1473.9 C18:2/C18:2/C18:2/C20:3 96.2 ± 11.0

1475.9 C18:2/C18:2/C18:2/C20:2 54.3 ± 5.5

Data are means ± SD, n=5.
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